Audio attenuator for microphone input

A small white 3d-printed box with a black label that says "line in" and "mic out".
The finished product. Label made with a Brother Label Printer.

Tape recorders, computers and capture cards all seem to be happy to accept a microphone input for adding audio or voice-overs, but very few have a “line input” to overlay music or any other “strong” signal source instead.

Read More

Electrically-isolated Optical Link for a VC99 DMM

Connected to the Matrix

I’ve had a VC99 multimeter for a while, and one of the nice things about it, is that it can be hacked to give it RS232 output pretty easily.

The hack is possible because the VC99 uses a rather standard DMM chipset that has serial-output capabilities built-in. You can check if the feature is there by holding the REL key down for several seconds. The “RS232” indicator will appear in a corner telling you it’s sending data to its serial port.

The problem, however, is that the VC99 doesn’t have a serial port. But still, if you open the device and probe pin 92 (TXD) from the controller IC, you should be able to see the serial data being sent at 2400 bps.

Read More

Calculators and numerical differentiation

It happens that I quite like scientific calculators, and lately I’ve been adding a few to my collection. Several calculators are CAS (“Computer Algebra System”)-capable, meaning they are powerful enough to do symbolic / algebraic processing, and thus are able to understand and manipulate algebraic expressions containing any mix of unknowns, operators and numbers, and simplify, expand, and solve those in a general form. They normally can also do symbolic differentiation and integration, computing the general derivative/integral “function” from a expression first, before you can evaluate them at given points, if desired.

But I’ve always found quite fascinating that some less advanced calculators still offer the possibility of doing numerical integration and differentiation. They don’t know for instance that the derivative function of 3⋅x² is 6⋅x, but they can still tell you that when x = 2 the derivative of 3⋅x² is 12.

Before you ask; I got into this rabbit hole because numerical differentiation and integration are kinda standard features nowadays of any decent calculator. It doesn’t need to be a high end or an expensive calc. In fact, I noticed that even my fx-570MS “entry level” scientific calculator I purchased like 10 years ago can do both operations, while three of my “high end” vintage programmable Casio calculators can’t. As they were “programmable” I think Casio kinda expected users to write their own programs for whatever “advanced” feature they needed. So I started wondering what is the method/algorithm used by current scientific calculators to compute these functions, so I could add the same functionality to my vintage calcs.

Now, I’ll focus on differentiation here because it’s way easier to deconstruct and understand how that works. A post about integration may follow, if this doesn’t turn out to be a massive borefest.

The concept of derivative

So if you go back to the formal definition of a derivative;

You’ll see that it basically attempts to find the “slope” of the function f(x) at a point x by evaluating the expression at x and (x+h) (as you would do with a straight line), and trying to reduce the difference in the X-axis between those two points (h) to a tiny fraction. In fact, it uses the concept of limit to find out where that expression converges when h approaches 0 (It never really gets there though, because the whole expression becomes a division by zero at that point). Read More

ZEPPP : Zero External Parts PIC Programmer

A couple of months ago I was asked if I could prepare a sort of workshop on one of my favorite topics: ASM Programming for PIC microcontrollers, which I of course accepted on the spot.  Now, I wanted to include a couple of “hands-on” lab sessions in this workshop, and because of this, I needed a way for all attendants to actually work with real PICs that hopefully did not involve purchasing PIC-programming hardware in bulk for what is probably going to be a one-shot activity.

The Quest

Simple DIY programming circuits exists, and in fact, my first PIC programmer was a home-built “Enhanced” NOPPP (No-Parts PIC Programmer); a fully functional device that required only a couple of components (Not really “No-parts” but pretty close to it). The problem is that it used the PC parallel port (R.I.P), and required an external power supply. And this goes for pretty much every “classic” DIY PIC programming circuit; they all either require extra hardware or can no longer be used on current computers.
Read More

Making a dedicated Logic Analyzer, Part 2

It took me a really long time to do this second part of my Pi-based Logic Analyzer project, mostly because of two things; the first one being that at one point (after I had pretty much all the case design, extra hardware and software tweaking done for my RPi1) I decided to switch to a Raspberry Pi 3, which of course meant discarding a lot of work and starting again but with the RPi3 in mind.

Why? Because I figured that my device was getting needlessly bulky (the case required extra room for a small fan (for the overclocking), extra width for the full-size SD card, and extra thickness due to the back-facing P5 connector, etc), and it would have been almost impossible for others to replicate this project (because I was using the old Pi1 Rev.B board, which is discontinued) so using a more modern Pi made sense. The physical layout of the Pi has stayed the same since the latest revision of Pi1 I believe, and -sans the position of the status LED- both the Pi2 and Pi3 are identical and completely interchangeable for the purposes of this project.

The second reason for the delay was that in an spectacular display of stupidity, I managed to fry my Waveshare TFT screen when I was done with the whole setup and designs for the Pi3, so I had to order another one online, and wait until it arrived, which took a long time. Read More

0-30V 3A Linear Power Supply Kit

It has become pretty common for me to have one or two unfinished projects on my bench or the shelf, because “I just can’t find the time” to complete them, or because I’m “waiting for something the project needs”. And both things happened in one way or another with a Linear Power Supply kit that I bought after watching a review/build by VoltLog.

I ordered the kit online, and before it arrived I went and purchased a 24V 3A transformer from a local electronics store, eager to build and test the kit as soon as I got my hands on it. By the end of July I received and soldered the kit. The enclosure arrived later I think.

Looks fun, right?

The beginning of the delays

Read More

Enclosure for a D3806 Buck-Boost Switching Power Supply

I kinda like the end result.

Not long ago I purchased this neat and compact DC to DC Buck Boost converter that performs reasonably well. It has a maximum output of 38V, 6A and has more than enough flexibility and features to be a secondary power supply in my lab.  I recently found a review of this product by Julian Ilett on his channel (which I’ve been following for a while) and the way it works is quite clever. The problem for me, however, is that it was a bit messy to have the bare circuit board laying around unprotected on my bench. The top-mounted panel wasn’t too practical either, and it was becoming increasingly clear that it was meant as an adjustable power converter module rather than a supply. Read More


Making a dedicated Logic Analyzer, Part 1

For a few months now (and after successfully using a cheap USB analyzer with my Pocket C.H.I.P) I’ve wanted to make a sort of standalone Logic Analyzer  / mini linux machine that I could have on my bench. I originally wanted to use one of my C.H.I.P boards, but I soon stumbled upon a bit of a difficulty: It’s not that easy to use readily-available touch-screen / LCDs with the C.H.I.P.

Because of this I decided to switch to an old RaspberryPi1 Model B that I had laying around instead.  I don’t need anything faster than that, and finding TFT/LCD screens for Raspberry Pi is ridiculously easy. As a matter of fact, I already had a small 480×320 LCD that I tested before and worked really well. I may eventually switch to a small HDMI screen, but for the time being I’ll use this one:

*SPOILERS* The RPI with the LCD after everything was configured.

Read More

UV Exposure Box Project – Part 2

I disabled the safety feature just for this shot. You are welcome.

This is the second part of my adventure building a UV Exposure box, in which as you can see, I actually finished the build. In the first part I made the structure and planned the electronics. This part covers a whole lot more, distributed over many weeks doing small things here and there. Read More

An update to my desk clock

I like to call this revision “Please believe me, I’m not a bomb”

Like a year ago I made myself a nice little desk clock that has worked fine since then. But recently I revisited the project to do certain improvements.

For starters I wanted a smaller board so I could fit it inside an enclosure.  I also wanted to power the clock from a rechargeable 18650 battery and add the charging circuitry to the design. I was also willing to give up with the ultra low power consumption and use a DC-DC booster that would of course draw more current but would ensure the clock gets a nice and stable 5V at all times. This has two advantages: It keeps a constant brightness for the display, and, more importantly, will give me reliable 5V in the aux port so I can easily interface the clock with other devices or external circuitry if I so desire. Read More