post

SDrive-Max Using a cheap 2.4 TFT LCD

One of the things I’ve been interested in for the last year or so, is developing for the Atari family of 8-bit computers. I haven’t done a lot yet, but I’ve been slowly getting software, docs, and hardware to start writing code with all the tools I could possibly need.

I had already built a SIO2Arduino, and that allows me to emulate a disk drive that I can use to load the dev tools I need. Its biggest problem, however, is that it only allows you to mount one disk drive at a time. If I wanted to have any form of operating system, dev tools and my own project files, I would need to create a custom Frankenstein disk image with everything inside.

A more elegant solution, of course, would be to use something that’d allow me to emulate several drives at once. That device already exists, and it’s called SDrive-Max.

Read More

ZEPPP : Zero External Parts PIC Programmer

A couple of months ago I was asked if I could prepare a sort of workshop on one of my favorite topics: ASM Programming for PIC microcontrollers, which I of course accepted on the spot.  Now, I wanted to include a couple of “hands-on” lab sessions in this workshop, and because of this, I needed a way for all attendants to actually work with real PICs that hopefully did not involve purchasing PIC-programming hardware in bulk for what is probably going to be a one-shot activity.

The Quest

Simple DIY programming circuits exists, and in fact, my first PIC programmer was a home-built “Enhanced” NOPPP (No-Parts PIC Programmer); a fully functional device that required only a couple of components (Not really “No-parts” but pretty close to it). The problem is that it used the PC parallel port (R.I.P), and required an external power supply. And this goes for pretty much every “classic” DIY PIC programming circuit; they all either require extra hardware or can no longer be used on current computers.
Read More

Making a dedicated Logic Analyzer, Part 2

It took me a really long time to do this second part of my Pi-based Logic Analyzer project, mostly because of two things; the first one being that at one point (after I had pretty much all the case design, extra hardware and software tweaking done for my RPi1) I decided to switch to a Raspberry Pi 3, which of course meant discarding a lot of work and starting again but with the RPi3 in mind.

Why? Because I figured that my device was getting needlessly bulky (the case required extra room for a small fan (for the overclocking), extra width for the full-size SD card, and extra thickness due to the back-facing P5 connector, etc), and it would have been almost impossible for others to replicate this project (because I was using the old Pi1 Rev.B board, which is discontinued) so using a more modern Pi made sense. The physical layout of the Pi has stayed the same since the latest revision of Pi1 I believe, and -sans the position of the status LED- both the Pi2 and Pi3 are identical and completely interchangeable for the purposes of this project.

The second reason for the delay was that in an spectacular display of stupidity, I managed to fry my Waveshare TFT screen when I was done with the whole setup and designs for the Pi3, so I had to order another one online, and wait until it arrived, which took a long time. Read More

Installing Apache and PHP on an Intel Edison with Yocto Poky 3.5

I got the chance to play with an Intel Edison board a couple of months ago, and I just got my own board today, so I spent a bit of my afternoon settings things up, and playing with it.

One thing I noticed, is that most tutorials and guides for the Edison were written for the version of the system that was popular during the “golden age” of these boards (the “2015-05-25” image), which is no longer the latest version. Now that I’ve upgraded mine to the most recent image (2016-06-06) it was clear that a lot of packages were upgraded, removed or changed, which means that a lot of tutorials, guides and info online no longer apply (I actually experienced this first-hand when trying to find config files that were nowhere to be found, or disable services that no longer existed).

But among the differences, the worst offense (to me) is that Apache is missing (It was apparently replaced by nodeJS as their “web” technology of choice). A lot of fun things you can do with an Edison (and other linux boards) require Apache or PHP, so this might be a problem for a lof of you, not only myself.

But anyway, upgrading is usually good (as long as the new software runs well), so I decided to give the new version a chance.

Read More

Arduino’s broken Random()

If you are using your Arduino’s PRNG (Pseudo-Random Number Generator) for anything more serious than flashing random lights for your Christmas decorations, there’s a chance you might run into some unexpected issues, as the random() function in Arduino seems to be somewhat broken.

Why? Let me explain.

Background

Most basic random number generators in programming libraries and platforms are based on what is called a “Linear Congruential Generator” (LCG), and I have discussed them before here in my blog. As with any PRNG, the output of the algorithm ends up being a sequence of numbers “seemingly” selected at random, starting from a “seed”.

Given the basic structure of an LCG, after you have drawn X numbers from the generator, you’ll start getting the same sequence again. This is called the “period” of the LCG, and is one of the things you should know about the PRNG you are using (again, if you are serious about your random numbers, or you need a controlled, predictable and stable behavior).

Arguably, you should always know the weakness and strengths of the PRNG you are going to use, before even using it, as to avoid any potential pitfall and/or limitation (and that’s why it’s normally not a good idea to use the default implementation of a random generator in any language; For the most of it you don’t know what you are getting).

Read More

post

Making a dedicated Logic Analyzer, Part 1

For a few months now (and after successfully using a cheap USB analyzer with my Pocket C.H.I.P) I’ve wanted to make a sort of standalone Logic Analyzer  / mini linux machine that I could have on my bench. I originally wanted to use one of my C.H.I.P boards, but I soon stumbled upon a bit of a difficulty: It’s not that easy to use readily-available touch-screen / LCDs with the C.H.I.P.

Because of this I decided to switch to an old RaspberryPi1 Model B that I had laying around instead.  I don’t need anything faster than that, and finding TFT/LCD screens for Raspberry Pi is ridiculously easy. As a matter of fact, I already had a small 480×320 LCD that I tested before and worked really well. I may eventually switch to a small HDMI screen, but for the time being I’ll use this one:

*SPOILERS* The RPI with the LCD after everything was configured.

Read More

Developing on a Pocket CHIP with “Motor”, a Text-based IDE

Nothing like a Text-based UI

A recent discussion on the Pocket C.H.I.P forums made me dig up memories of my time with DJGPP (a wonderful DOS port of GCC), and its quite functional text-based IDE; RHIDE.

I thought that it would be great to have RHIDE running on my Pocket CHIP for doing simple C/C++ development on the go, as TUIs (Text-based User Interfaces) were pretty simple and could work in really low resolutions, but unfortunately CHIP’s ARM architecture was completely foreign to RHIDE’s build scripts, and it refused to compile.

I’m definitely no Linux guru, but I reckoned that adding the architecture to the build script wasn’t going to be easy, especially since it apparently had several architecture-dependent libraries, modules, etc, so I embarked on a quest to find another text-based IDE for Linux, and that’s how I found Motor.

Sure, the project is 12 years old (last “build” is 3.4.0 from February 2005, and still more recent than RHIDE), but I thought that perhaps it could still work on a relatively modern Linux distribution, and to my surprise, it did (with a few gotchas, though).

Read More

Using your Pocket C.H.I.P as a portable Logic Analyzer

Pocket C.H.I.P + USB Analyzer

So a time ago I purchased a cheap USB Logic Analyzer from eBay that works great with a PC, and it’s been really helpful to debug several projects to date. It uses the Logic software from Saleae as hinted by the label on it, although I am not sure if the device is supposed to be a cheap knockoff of one of the (pricier) genuine Saleae analyzers, or it was just designed to be “Saleae-compatible” and use their software. Read More

Mini HTTP Daemon Service for RaspberryPi/Linux apps

So recently I had to design a relatively convoluted system with a database that communicates with a hardware controller board and a RFID reader. Among other things, the system has to respond to several commands issued from a web frontend over HTTP, and report the status of each sub-system, sensor, etc hopefully in JSON or similar web-friendly format.

For this task I picked a Raspberry Pi as the platform, and made a program in C that talks directly to the hardware and handles everything including the HTTP requests.  Now, this is definitely not the first time that I need to write a program that has to listen for requests and reply with simple data over HTTP,  so I thought that perhaps it would be useful to encapsulate this functionality in a small module that I could later re-use in other projects.

So I ended up doing exactly that, and uploaded the code to my GIT-Hub Repository, so you’ll find the result from that here: https://github.com/battlecoder/httpdpi.

Before you dive into the code, please bear in mind that it’s an extremely simple service that will only respond to GET requests, but has all it needs to reply with different status codes, text, and binary data. It only uses sockets and POSIX threads, so it’s very fast, doesn’t depend on a huge framework, and can run in parallel with your code. It’s also really easy to expand if you want to support other types of requests.

Since it doesn’t have obscure dependencies, it should also compile on most linux boxes including other small computers like C.H.I.P, Beaglebone, etc.

Read More

Custom PCB for SIO2Arduino

A while ago -and after a couple of trips to our local “flea market”- I managed to get my hands on a fully working vintage Atari 800XL. It took some tests and soldering work, but I ended up with a fully working 800XL with a XC12 cassette deck (I even got a defective cassette deck that it’s mostly working now after some repairs). I also built a video cable to have the “vastly superior” RCA video output instead of the noisy “TV” RF signal.

The tape deck loads and saves to cassette perfectly, but every read/write operation takes ages. Not that I mind waiting, to be fair, but since there seems to be better alternatives (like the floppy disk drive) it makes no sense to just stick to this, especially since I intend to do some development on the device.

Yes, this picture was taken with a potato.

Yes, this picture was taken with a potato.

Read More